
 1

Pynamic
See https://asc.llnl.gov/coral-2-benchmarks/

for examples of benchmark summary files and platform-specific problem sets

Summary Version
1.2

Purpose of Benchmark (few sentences)
Pynamic was developed to influence the design of the dynamic loading subsystem on

large machines and to test its ability to handle the intensive use of dynamically-linked

libraries, as often exhibited by large Python-based scientific applications. Running

sequentially (i.e., a single MPI task), this benchmark measures how quickly the dynamic

loader can load the configured number of dynamic libraries into a process, resolve all the

symbols in these libraries, and execute all the routines defined in them. Running in

parallel, it also captures how scalably the relevant subsystem can handle large numbers of

file system operations that the dynamic loader requires. The scalable use of file systems

during dynamic loading is critically important for large machines: when many parallel

processes in a Python-based application simultaneously load dynamic Python modules, a

file-system-access storm can be created, leading to unacceptably slow performance and

further having an effect similar to a site-wide denial-of-service attack on the file systems

where these modules reside.

Characteristics of Benchmark (1-2 paragraphs)
Pynamic is a benchmark that generates a user-specified number of Python dynamic

modules and utility libraries objects to emulate a wide range of dynamic linking and

loading behavior exhibited by Python-based scientific programs. The benchmark can be

run in parallel using either pyMPI (http://pympi.sourceforge.net) or mpi4py

(http://mpi4py.scipy.org/) and can be tested in several modes. For example, in one mode,

Pynamic directly links in all these modules at link time, creating the pynamic-pyMPI

executable. In another mode, Pynamic dynamically loads these modules at runtime via

Python’s import construct into a vanilla pyMPI or a base python interpreter with the

mpi4py module installed. Finally, Pynamic also generates a ~200MB pynamic-bigexe
executable, which tests a system’s ability to handle large, dynamically-linked
executables.

While the benchmark supports configurable emulation of the DLL usage, we recommend

large configurations in terms of the number and the size of Python dynamic modules and

of utility libraries to be used for testing. Making full use of some of Python’s popular

features have led to applications that access extremely high numbers of DLLs. For

example, one of LLNL’s important multi-physics applications uses over nine hundred

dynamic libraries. With the appropriate parameters, Pynamic can build dummy

applications that closely model the footprint of important Python-based multi-physics

codes.

Pynamic provides three performance metrics to capture each of three phases pertaining to

the DLL usage: the startup time for library loading; the module-import time for symbol

https://asc.llnl.gov/coral-2-benchmarks/

 2

resolution; and the visit time for execution. However, because contemporary dynamic

loaders provide parameters that allow shifting of such overheads from one phase to

another, the summation of all three metrics should form the overall dynamic loader

performance metric.

Mechanics of Building Benchmark
Pynamic includes the source for pyMPI, which requires a Python installation for the

compute nodes. Furthermore, to run the mpi4py driver, the Python installation must also

include an mpi4py build. In addition, two of the key Pynamic files are themselves Python

scripts, which requires a Python installation on the build node. The required configuration

parameters are as follows:

./config_pynamic.py 900 1250 -e -u 350 1250 -n 150 -b

Note you may optionally supply “-j 16” to parallelize parts of the build with 16 processes.

This will create the specified set of DLLs and the pynamic-pyMPI and pynamic-bigexe

executables with all of the DLLs linked in. The pynamic-bigexe file is a large base

executable. The configuration script will also create a stand-alone pyMPI executable (i.e.,

without the DLLs linked in). Pynamic must be built as a dynamically-linked executable.

Arguments can be passed into pyMPI’s configure script by appending the -c option (run

`./config_pynamic.py –h` for more details).

Mechanics of Running Benchmark
Pynamic shall be run in several modes:

srun ./pynamic-pyMPI pynamic_driver.py `date +%s`

srun ./pynamic-bigexe pynamic_driver.py `date +%s`

srun ./pyMPI pynamic_driver.py `date +%s`

the following requires mpi4py to be installed in

your python interpreter

srun python pynamic_driver_mpi4py.py `date +%s`

For each of the 4 run modes, Pynamic shall be run on a single node with a single MPI

task to determine the serial run time. Small scale tests should be run at node counts of 1,

2, 4, 8, and 16 nodes with 1 MPI task per core. If the proposed system includes a utility to

distribute application binaries, such as Spindle, then results shall be gathered both with

and without that utility. Furthermore, Pynamic should be run twice within a given node

allocation. The startup time of the first run determines the “cold start” metric, when the

binaries are freshly loaded, while the second run determines the “warm start” metric,

when the binaries are loaded into the file system cache.

Note: The result of the `date +%s` command must be passed as a command-line

argument in order to get the startup time of Pynamic.

 3

Verification of Results
A successful serial run of Pynamic (i.e., no errors) is sufficient verification of

functionality. The resulting startup + module-import + visit metric provides insight into

the efficiency of the dynamic loading subsystem. A time comparison between pynamic-

pyMPI and pyMPI provides insight into the benefits and the penalties of linking against

the generated shared libraries. Additionally, measuring the time of a cold start (first

invocation) captures the cost of initially loading Pynamic from the file system and the

time of a warm start (subsequent invocations) provides insight into the time savings from

running from a warm disk buffer cache. Finally, the start-up + module-import + visit

metric resulting from a series of scaling runs of Pynamic illustrates the scalability of the

dynamic loading subsystem in handling large number of file system operations that the

dynamic loader requires at scale.

